

LW IGW7404M

四串口(RS485)

MB SmartGateway

智能网关

使用说明

目录

第1章	产品概述	4
1.1	概述	4
1.2	应用场景	4
	1.2.1 Modbus TCP 主站采集网关	4
	1.2.2 Modbus RTU 主站采集网关	5
1.3	性能特点	5
1.4	产品优势	6
1.5	技术参数	7
第2章	外观尺寸	8
2.1	产品外观	8
	2.2.1 前视图	8
	2.2.2 后视图	9
	2.2.3 侧视图	9
	2.2.4 顶视图	9
第3章	产品接线图10	0
产品	品接线图10	0
第4章	引脚说明及指示灯1	1
4.1	引脚定义1	1
4.2	LED 指示灯	1
第5章	IE 浏览器设置1	2

5.1	搜索 MODBUS 网 关 模 块	12
5.2	设置 MODBUS 网关模块	12
	5.2.1 主站采集参数	14
	5.2.2 本地从站参数	15
	5.2.2.1 通讯类型为服务器	16
	5.2.2.2 通讯类型为客户端	16
	5.2.2.3 通讯类型为串口	.17
	5.2.3 主站采集状态	18
	5.2.4 修改密码	19
5.3	创建示例	19
	5.3.1 创建并配置 Modbus 从站	20
	5.3.2 创建并配置本地从站	29
	5.3.3 主站采集状态	32
	5.3.4 从站测试	33
	5.3.4.1 服务器模式通讯	41
	5.3.4.2 串口模式通讯	43
第6章	Modbus 功能码	45
6.1	简述	45
6.2	常用功能码	45
6.3	读线圈寄存器——01H	45
	6.3.1 发送	45
	6.3.2 响应	46

6.4	读离散输入寄存器——02H	46
	6.4.1 发送	46
	6.4.2 响应	46
6.5	读保持寄存器——03H	47
	6.5.1 发送	47
	6.5.2 响应	47
6.6	读输入寄存器——04H	48
	6.6.1 发送	48
	6.6.2 响应	48
6.7	写单个线圈寄存器——05H	48
	6.7.1 发送	48
	6.7.2 响应	48
6.8	写单个保持寄存器——06H	49
	6.8.1 发送	49
	6.8.2 响应	49
6.9	写多个线圈寄存器——0FH	49
	6.9.1 发送	49
	6.9.2 响应	50
6.10) 写多个保持寄存器——10H	50
	6.10.1 发送	50
	6.10.2 响应	
第7章	装箱清单	
•		

第1章 产品概述

1.1 概述

LW IGW7404M 为四串口(RS485)Modbus 智能网关,专门针对 PLC、HMI 或者组态软件的采集。传统的 Modbus 网关只是 Modbus TCP 和 Modbus RTU 协议做个转换,网关本身并不主动采集数据,而 IGW7404M Modbus 智能网关是可以主动采集从站数据并缓存到网关内部,从而上位机可以通过 TCP 或者 RS485 总线直接从 Modbus 智能网关取数据,这样就减少了上位机主站与从站的交互次数,极大地提高了采集速度,实时性,可靠性以及稳定性;对于多 RS485 主站想要访问相同的从站数据,传统的 Modbus 网关是无法解决的,而由于 Modbus 智能网关是自动采集并存储数据,因此完全支持多主站同时通过 RS485 总线读取数据;另外,针对一些没有以太网口的 PLC 或者 HMI,也可以通过 Modbus 智能网关的 RS485 端口,采集到 Modbus TCP 从站的数据。

本产品采用标准 Modbus RTU/Modbus TCP 协议及常用功能码,使用户可以更加轻松实现与 SCADA 软件、HMI 设备及支持 Modbus RTU 协议的 PLC 等设备和系统的整合应用,提供协议和示例代码,使您的二次开发更加灵活、简便、高效。

1.2 应用场景

1.2.1 Modbus TCP 主站采集网关

1.2.2 Modbus RTU 主站采集网关

1.3 性能特点

- 兼容性强,支持接入所有厂家标准的 MODBUS 协议的采集模块
- 具有 Modbus TCP/IP、Modbus Rtu、Serial Port 等三种操作模式
- 通过网页浏览器、设置软件进行参数修改设置
- 对于需要开发软件的用户,我们免费提供二次开发包 SDK
- 双硬件看门狗,绝不死机
- 采用 32 位 ARM 嵌入式 CPU, 高性能低功耗
- 采用 Modbus TCP 通信协议,支持客户端和服务器模式
- 丰富的的指示灯,方便调试
- RJ-45 通信接口提供防雷保护
- 电源具有过流、过压、防反接及防雷保护
- 宽电源电压设计
- 工业级温度范围,应对严苛现场环境
- 标准导轨安装或螺钉固定

1.4 产品优势

Modbus 协议在工业中得到广泛的应用,而随着工业 4.0 的发展趋势,越来越多的支持 Modbus 协议的仪器仪表要求联网监控,传统的 Modbus 网关就是把原来支持串口 Modbus 的设备适配成支持网口,这样就能方便联网。而 IGW7404M Modbus 智能网关相比传统 Modbus 网关做了很多的改进,如下:

● 更高的采集速度。

在采集多个 Modbus 从站数据时比传统 Modbus 网关采集速度快很多,传统的 Modbus 网关只是 Modbus RTU 与 Modbus TCP 的协议转换,本身并不处理数据,而 IGW7404M 智能网关是自动采集数据并缓存到本地。因此,如果主站要采集 100 台从站数据,原本要 100 次读命令,而通过 IGW7404M Modbus 智能网关,最优的情况是只需要一次读命令就可以。

更高的可靠性。

将多个读命令中的数据集中到几个命令来完成,减少数据采集过程中来回交互的次数,也 就减少了出错概率。

● 支持多 RS485 主站。

传统 Modbus 网关是不能支持 RS485 总线上多个主站的,原因是多主站会产生数据冲突。 而使用 IGW7404M Modbus 智能网关就不存在这个问题。多主站是直接与智能网关通讯,读写 智能网关缓冲中的数据。

支持多 Modbus TCP 主站。

传统 Modbus TCP 网关在多个主站同时访问从站时,采用排队的机制,这受制于 RS485 总 线同时只能有一个主站。因此同时访问的主站越多,回复会越慢。而 IGW7404M Modbus 智能 网关是把数据缓冲在设备内部,实时读取,没有延时。

● 编程更简单。

通过 PLC 或组态软件采集数十个设备的数据,编程过程比较繁琐。而通过 IGW7404M Modbus 智能网关,编程过程变得简单很多,只需要集中处理所采集的数据。

● 完善的错误跟踪机制。

传统 Modbus 网关只数据转换,不做数据交互的逻辑判断,所以不会记录错误信息,这些错误分析都需要在上位机处理。在采集很多从站时,若有一台从站出问题,很难在很短时间内排查出来。而 IGW7404M Modbus 智能网关内部集成了详细的日志功能,可以快速找到出问题的从站,前期调试非常方便和迅速。同时,上位机也可以读取所有从站的工作状态,及时发现问题并通知工作人员。

降低工程成本。

原来需要多台 PLC 采集数据,现在一台数据采集器配合一台 PLC 就可以完成采集。

1.5 技术参数

	通讯接口	RJ-45			
	速率	10/100M 自适应			
	通讯协议	Modbus TCP			
网络通信参数	嵌入协议	ARP, ICMP, IP, TCP, UDP, DHCP, DNS, HTTP			
	设置方式	网页设置			
	防雷防护	250W			
	串口数量	4 个			
串口接口	串口协议	4 个 RS485/422			
中口按口	防雷	每线 600W			
	接口类型	凤凰端子			
	校验	None, Even, Odd			
串口通信参数	数据位	5, 6, 7, 8			
中口地行勿效	停止位	1, 2			
	速率	300bps 至 115200bps			
	主站采集	可采集 Modbus RTU/TCP 从站,支持写操作 每一路 RS485 最多挂 32 个从站,最多可 采集 2000 个寄存器			
MODBUS	本地从站	PLC/HMI 等主站可通过 Modbus RTU/TCP 读取采集的数据,每一个 Modbus TCP 服务 最多同时支持 5 个 TCP 主站连接访问,最 多可创建 10 个本地主站			
	电源规格	9-28VDC (推荐 12VDC)			
山ű乡粉	功耗	60mA@12VDC			
电源参数	防雷防护	3000W			
	端口压保护	30V (可自恢复)			
工作环境	工作温度、湿度	-40~85℃,5~90%RH,不凝露			
-1-1トグドが	储存温度、湿度	-60~125℃,5~90%RH,不凝露			
其他	尺寸	110mm*75mm*30mm			
光旭	保修	6年质保			

第2章 外观尺寸

2.1 产品外观

2.2.1 前视图

2.2.2 后视图

2.2.3 侧视图

2.2.4 顶视图

第3章 产品接线图

产品接线图

第4章 引脚说明及指示灯

4.1 引脚定义

引脚定义	说明
VS+	电源正
GND	电源负
NET	RJ-45 接口
485+	485 正端
485-	485 负端
RS485(GND)	RS485 地线
RS4851~4	RS485 串口

4.2 LED 指示灯

LW IGW7404M 外设 12 个状态 LED 指示灯,能够准确及时报告设备的工作状态,为工程的施工和调试带来极大的方便。其说明如下表所示:

指示灯	指示灯说明
PWR	电源指示灯(亮:有电源连接;灭:无电源连接)
RUN	闪烁:正常运行;常亮或者不亮:工作不正常
LINK	亮:表示有网络连接,闪烁:表示有网络数据收发
SPD	亮:表示 100M 网速,不亮:表示 10M 网速
RX1-RX4	串口收数据指示灯,闪烁:串口有收到数据,灯灭:没 有收到数据
TX1-TX4	串口发数据指示灯,闪烁:串口有发数据,灯灭:没有 发数据

第5章 IE 浏览器设置

5.1 搜索 MODBUS 网关模块

打开 IO 模块测试程序,该程序默认"使用网络搜索",点击"搜索控制器"图标,局域网内的所有模块会展示出设备列表框中,页面会显示设备的参数包括 MAC 地址,IP 地址(IO 模块默认出厂IP 地址为 192.168.1.31),型号,版本号,控制器名字。如下图:

5.2 设置 MODBUS 网关模块

IE浏览器(提示: IE浏览器版本号11或以上)设置前需知道Modbus智能网关的IP地址和确保网关正常加点并连接好通讯线缆,出厂Modbus智能网关IP地址统一是192.168.1.31。先将电脑网络配置成192.168.1.XXX网段。然后通过http://192.168.1.31访问设备配置,出厂的用户名是admin,密码是0,打开的WEB配置页面如下:

点击"登录"按钮,进入主参数界,界面显示 Modbus 智能网关的 MAC 地址,主机名称, IP 地址,子网掩码,网关,DNS 服务器等参数,勾选"启用 DHCP"则自动获取 IP 地址,如下图:

5.2.1 主站采集参数

Modbus 智能网关作为主站,点击"主站采集参数"图标,切换到主站采集参数界面,各参数含义如下:

ID: 主站采集编号,每个 Modbus 从机 ID 须不同。

通讯类型:点击下拉菜单,根据通讯的类型,选择 Modbus RTU、Modbus ASCII、Modbus TCP。

地址: Modbus 从机地址(RS485 地址或网络地址),同一个串口上的 Modbus 从机 RS485 地址 须不同,网络地址不能相同。

区:点击下拉菜单,根据 Modbus 从机定义的寄存器分区,选择 0 区线圈状态,1 区离散输入,3 区输入寄存器,4 区保持寄存器。

寄存器: Modbus 从机的起始寄存器。

个数: Modbus 从机的数量。

映射地址: Modbus 从机寄存器地址映射到 Modbus 智能网关本地的寄存器地址。多个同类 Modbus 从机寄存器地址映射时,映射到 Modbus 智能网关本地的寄存器地址是自动连续的。

实例个数:同类 Modbus 从机的数量。

串口:点击下拉菜单,选择所需要的串口1,串口2,串口3,串口4。

波特率:点击下拉菜单,根据需要选择4800~115200。

模式:点击下拉菜单,根据通讯方式选择 RS232、RS485、RS232 流控。

数据位: 5、6、7、8。

校验位: NONE、EVEN、ODD。

停止位: 1、1.5、2。

轮询间隔(ms): 200ms 采集一次数据,最快 50ms 采集一次数据。

应答超时(ms):超过20ms没应答,就判为超时。

如下图:

5.2.2 本地从站参数

Modbus 智能网关作为本地从站,点击"本地从站参数"图标,切换到本地从站参数界面,如下图:

Modbus 智能网关作为本地从站,有两种通讯方式:网络通讯和串口通讯,三种通讯类型:服务

器、客户端、串口,其中服务器和客户端属于网通通讯。

5.2.2.1 通讯类型为服务器

ID: Modbus 智能网关作服务器编号。

地址: Modbus 智能网关作服务器的地址。

监听端口: Modbus 智能网关作为服务器的监听端口。

监听个数: Modbus 智能网关同时监听的连接北向(PC)数量,最多 5 个。**当超出设定的监听** 个数时,连接不上通讯失败(例:设定的监听个数是 2,如果连接北向(PC)数量为 3 或以上,则通讯失败)。

填入相应的参数,点击保存,提示创建成功,如下图:

5.2.2.2 通讯类型为客户端

ID: Modbus 智能网关作客户端编号。

地址: Modbus 智能网关作客户端的地址。

服务器 IP: Modbus 智能网关作为客户端和服务器通讯,服务器的 IP 地址(北向 PLC、PC 等上位机)。

端口: Modbus 智能网关和服务器通讯的端口。

填入相应的参数,点击保存,提示创建成功,如下图:

5.2.2.3 通讯类型为串口

ID: Modbus 智能网关作串口通讯编号。

地址: Modbus 智能网关作串口通讯的地址。

串口:点击下拉菜单,选择所需要的串口1,串口2,串口3,串口4。

波特率:点击下拉菜单,根据需要选择4800~115200。

模式:点击下拉菜单,根据通讯方式选择 RS232、RS485、RS232 流控。

数据位: 5、6、7、8。

校验位: NONE、EVEN、ODD。

停止位: 1、1.5、2。

填入相应的参数,点击保存,提示创建成功,如下图:

5.2.3 主站采集状态

Modbus 智能网关作为主站,点击"主站采集状态"图标,切换到主站采集状态界面,各参数含义如下:

类型: Modbus 智能网关的通讯类型。

地址: Modbus 从机地址(RS485 地址或网络地址)。

参数: 1:9600n81(串口 1,波特率 9600,校验位 NONE,数据位 8,停止位 1)。

寄存器: 100->1000(Modbus 从机的寄存器起始地址是 100,映射到 Modbus 智能网关本地的起始寄存器地址是 1000), 200->2000(Modbus 从机的寄存器起始地址是 200,映射到 Modbus 智能网关本地的起始寄存器地址是 2000)。

寄存器个数: Modbus 从机的寄存器数量。

状态: Modbus 从机的工作状态。

5.2.4 修改密码

初始密码是 0,密码必须是 10 以内的数字,随意设置几位数,没有限制。密码设置成功后,需重新登录。

5.3 创建示例

通过本示例,帮助您理解并使用 Modbus 智能网关 IGW7404M。

目的:通过 Modbus 智能网关,采集 5 台 RS485 ModbusRTU 从站和 2 台网络 ModbusTCP 从站的数据,然后上位机软件读取被采集的数据。

工具: 一台安装 Windows 系统的电脑。

一台型号为 IGW7404M 的 Modbus 智能网关。

五台 RS485 ModbusRTU 从站: 型号为 M7244, M7222,MA7108C,M7116,M7288 各 1 台。

二台网络 ModbusTCP 从站: 型号为: NA7108C 和 N7244 各 1 台。

Modbus Poll(www.modbustools.com 官网可以下载试用版,网络上也有很多下载的试用版本)

5.3.1 创建并配置 Modbus 从站

点击"主站采集参数"图标,在串口1下创建两个RS485 ModbusRTU 从站,在串口2下创建一个RS485 ModbusRTU 从站,在串口3下创建一个RS485 ModbusRTU 从站,在串口4下创建一个RS485 ModbusRTU 从站,在串口4下创建一个RS485 ModbusRTU 从站,在网络下创建两个网络 ModbusTCP 从站.

创建串口 1 下的两个 RS485 ModbusRTU 从站。分别是 M7244 和 M7222,需提前设置 M7244 和 M7222 的 RS485 地址分别是 1 和 2(同一个串口上的 Modbus 从机 RS485 地址须不同)。

首先创建 M7244 开关量模块 RS485 ModbusRTU 从站,参数配置如下图,特别说明的是,M7244 开关量模块的 RS485 地址为 1,起始寄存器地址是 100,个数为 16,我们把它映射到 Modbus 智能 网关的虚拟寄存器地址是 1000。点击保存,提示创建成功,如下图:

再创建 M7222 开关量模块 RS485 ModbusRTU 从站,参数配置如下图,特别说明的是,M7222 开关量模块的的 RS485 地址为 2,起始寄存器地址是 200,个数为 8,我们把它映射到 Modbus 智能 网关的虚拟地寄存器址是 2000。点击保存,提示创建成功,如下图:

创建串口 2 下的 1 个 RS485 ModbusRTU 从站。MA7108C 模拟量 4-20mA 采集模块,需提前设置 MA7108C 的 RS485 地址是 1。起始寄存器地址是 700,个数为 16,我们把它映射到 Modbus 智能 网关的虚拟地寄存器址是 3000。点击保存,提示创建成功,如下图:

创建串口3下的1个RS485 ModbusRTU从站。M7116开关量干接点采集模块,需提前设置M7116的 RS485 地址是 1。起始寄存器地址是 400,个数为 32,我们把它映射到 Modbus 智能网关的虚拟 地寄存器址是 4000。点击保存,提示创建成功,如下图:

创建串口4下的1个RS485 ModbusRTU从站。M7288开关量干接点采集模块,需提前设置M7288的 RS485 地址是 1。起始寄存器地址是 300,个数为 32,我们把它映射到 Modbus 智能网关的虚拟地寄存器址是 5000。点击保存,提示创建成功,如下图:

创建网络下的 2 个网络 ModbusTCP 从站。分别是 NA7108C 和 N7244,需提前用 IO 模块测试程序 1.0.0.10 设置 NA7108C 和 N7244 的 IP 地址分别是 192.168.1.30 和 192.168.1.32。如下图:

用 IO 模块测试程序 1.0.0.10 分别通讯上 NA7108C 和 N7244, 可以看到 NA7108C 和 N7244的 Modbus 地址都是 1, 如下图:

NA7108C 的 Modbus 地址:

N7244 的 Modbus 地址:

首先创建 NA7108C 模拟量采集模块 ModbusTCP 从站,参数配置如下图,特别说明的是,NA7108C 模拟量模块的 Modbus 地址为 1,起始寄存器地址是 100,个数为 16,我们把它映射到 Modbus 智能网关的虚拟寄存器地址是 6000。点击保存,提示创建成功,如下图:

再创建 N7244 开关量模块 ModbusTCP 从站,参数配置如下图,特别说明的是,由于 N7244 的寄存器种类既有线圈状态又有保持寄存器状态,所以 Modbus 智能网关的虚拟地寄存器址要分段 来映射,N7244 开关量模块的 Modbus 地址为 1,线圈状态的起始寄存器地址是 100,个数为 16,我们把它映射到 Modbus 智能网关的虚拟地寄存器址是 7000。点击保存,提示创建成功,如下图:

N7244 保持寄存器状态的起始寄存器地址是 116,个数为 4,我们把它映射到 Modbus 智能网关的虚拟地寄存器址是 7016,点击保存,提示创建成功,如下图:

全部 Modbus 从站创建完毕,如上图显示 Modbus 从站的总数为 8 个。

5.3.2 创建并配置本地从站

Modbus 智能网关作为本地从站,有两种通讯方式: 网络通讯和串口通讯,三种通讯类型: 服务器、客户端、串口,其中服务器和客户端属于网通通讯。点击"本地从站参数"图标,参数界面如下图:

创建服务器模式。点击"本地从站参数"图标,通讯类型选择"服务器",点击保存,提示创建成功,参数界面如下图:

创建客户端模式。点击"本地从站参数"图标,通讯类型选择"客户端",点击保存,提示创建成功,参数界面如下图:

ID: Modbus 智能网关作客户端编号。

地址: Modbus 智能网关作客户端的地址。

服务器 IP: Modbus 智能网关作为客户端和服务器通讯,服务器的 IP 地址(北向 PLC、PC 等上位机)。

端口: Modbus 智能网关和服务器通讯的端口。

创建串口模式。点击"本地从站参数"图标,通讯类型选择"串口",选择 Modbus 智能网关的 串口 4 来作为北向上位机采集 Modbus 从站的通讯口。注意: ModbusRTU 从站和本地从站的串口二选一,如果已创建串口 4 下的 RS485 ModbusRTU 从站,请先清除,复位系统然后再创建,点击保存,提示创建成功,参数界面如下图:

注意: 创建并配置完 Modbus 从站和本地从站后,必须点击"复位系统"图标,重新进入,配置才能生效。

5.3.3 主站采集状态

点击"主站采集状态"图标,可以很清楚的看到各个 Modbus 从站的参数及状态,如果某个 Modbus 从站通讯错误,状态栏会显示"掉线",方便排查故障。如下图:

NKWCDD®凌柯沃 MODBUS智能网关							
主参数				主站采集	状态		
	ID	类型	地址	参数	寄存器	寄存器个数	状态
主站采集参数	1	ModbusRTU	1	1:9600n81	100->1000	16	正常
本地从站参数	2	ModbusRTU	2	1:9600n81	200->2000	8	掉线
主站采集状态	3	ModbusRTU	1	2:9600n81	700->3000	16	正常
修改密码	4	ModbusRTU	1	3:9600n81	400->4000	32	正常
复位系统	5	ModbusRTU	1	4:9600n81	300->5000	32	正常
22.05%	6	ModbusTCP	1	192.168.1.30:502	100->6000	16	正常
	7	ModbusTCP	1	192.168.1.32:502	100->7000	16	正常
	8	ModbusTCP	1	192.168.1.32:502	116->7016	4	正常
型号: IGW7404M 版本: 1.0.0.1							V

5.3.4 从站测试

使用 Modbus Poll 工具创建 5 台 RS485 ModbuRTU 从站, 2 台 ModbusTCP 从站, 从站具体信息如下:

从站	从站地址	功能码	映射地址	寄存器数量	描述
Α	1	1	1000	16	M7244
В	2	1	2000	8	M7222
С	1	3	3000	16	MA7108C
D	1	1	4000	32	M7116
Е	1	1	5000	32	M7288
F	1	3	6000	16	NA7108C
C	1	1	7000	16	N7244
G	1	3	7016	4	11/244

我们将从站 A 的数据映射到智能网关的虚拟地址 1000, 从站 B 的数据映射到虚拟地址 2000, 从站 C 的数据映射到虚拟地址 3000,从站 D 的数据映射到虚拟地址 4000,从站 E 的数据映射到虚拟地址 5000,从站 F 的数据映射到虚拟地址 6000,从站 G 的数据映射到虚拟地址 7000 和 7016 (同一个从站功能码不同,可以分段映射),这样我们的主站就可以通过一个 01/03 功能码一次读取 7 个从站数据。

打开 Modbus Poll 工具,在菜单 File 中选择 New-Setup-Read/Write Definition 并创建从站 A

(Mbpoll1):

这里 Slave ID 就是从站 Modbus 地址,Function 就是 Modbus 功能码,Address 是映射寄存器地址,Quantity 是映射寄存器地址数量。选择 Fit to Quantity,并点击 OK 图标,从站 A(Mbpoll1)创建完成。

在菜单 File 中选择 New-Setup-Read/Write Definition 并创建从站 B(Mbpoll2):

这里 Slave ID 就是从站 Modbus 地址,Function 就是 Modbus 功能码,Address 是映射寄存器地址,Quantity 是映射寄存器地址数量。选择 Fit to Quantity,并点击 OK 图标,从站 B(Mbpoll2)创建完成。

在菜单 File 中选择 New-Setup-Read/Write Definition 并创建从站 C(Mbpoll3):

这里 Slave ID 就是从站 Modbus 地址,Function 就是 Modbus 功能码,Address 是映射寄存器地址,Quantity 是映射寄存器地址数量。选择 Fit to Quantity,并点击 OK 图标,从站 C(Mbpoll3)创建完成。

在菜单 File 中选择 New-Setup-Read/Write Definition 并创建从站 D(Mbpoll4):

这里 Slave ID 就是从站 Modbus 地址,Function 就是 Modbus 功能码,Address 是映射寄存器地址,Quantity 是映射寄存器地址数量。选择 Fit to Quantity,并点击 OK 图标,从站 D(Mbpoll4)创建完成。

在菜单 File 中选择 New-Setup-Read/Write Definition 并创建从站 E(Mbpoll5):

这里 Slave ID 就是从站 Modbus 地址,Function 就是 Modbus 功能码,Address 是映射寄存器地址,Quantity 是映射寄存器地址数量。选择 Fit to Quantity,并点击 OK 图标,从站 E(Mbpoll5)创建完成。

在菜单 File 中选择 New-Setup-Read/Write Definition 并创建从站 F(Mbpoll6):

这里 Slave ID 就是从站 Modbus 地址,Function 就是 Modbus 功能码,Address 是映射寄存器地址,Quantity 是映射寄存器地址数量。选择 Fit to Quantity,并点击 OK 图标,从站 F(Mbpoll6)创建完成。

在菜单 File 中选择 New-Setup-Read/Write Definition 并创建从站 G (Mbpoll7 和 Mbpoll8),注意由于从站 G 的 Modbus 功能码有线圈状态和保持寄存器两种,所以可以分段进行映射:

所有从站创建完之后,设置采集相应的数据,这里就列举其中A、C、G三个从站,如下图:

注意:由于从站 C(Mbpoll3)是采集模拟量,数据为浮点数,所以数据显示要转换为浮点数,具体参照选中从站 C(Mbpoll3),鼠标右键-Format-Float ABCD,如上图。

5.3.4.1 服务器模式通讯

在 Connection 菜单里面选择 Connect, 配置参数, Connection 方式 Modbus TCP/IP, IP 地址为 Modbus 智能网关的 IP 地址, Server Port:8888 必须与本地从站服务器类型的端口号一致,如下图:

点击 OK 图标,这样上位机就可以通过 Modbus TCP 服务器模式来采集本地从站信息,如下图:

5.3.4.2 串口模式通讯

在 Connection 菜单里面选择 Connect, 配置参数, Connection 方式 Serial Port, Serial Settings 串口选择 COM1,波特率选择 9600 等等,必须与本地从站串口 4 的参数完全一致,如下图:

点击 OK 图标,这样上位机就可以通过 RS485 串口 COM4 串口模式来采集本地从站信息,如下图:

第6章 Modbus 功能码

6.1 简述

Modbus 寄存器分为四种,寄存器分类如表 6.1 所示:

寄存器种类	数据类型	访问类型	功能码	PLC 地址	寄存器地址
线圈寄存器	位	读写	01H 05H 0FH	00001-09999	0000H-FFFFH
离散输入寄存器	位	只读	02H	10001-19999	0000H-FFFFH
输入寄存器	字	只读	04H	30001-39999	0000H-FFFFH
保持寄存器	字	读写	03Н 06Н 10Н	40001-49999	0000H-FFFFH

6.2 常用功能码

Modbus 中常用的功能码有 8 个,可以分为位操作和字操作两类,常用功能码如表 6.2 所示:

功能码	描述	PLC 地址	寄存器地址	位/字操作	操作数量
01H	读线圈寄存器	00001-09999	0000H-FFFFH	位操作	单个或多个
02H	读离散输入寄存器	10001-19999	0000H-FFFFH	位操作	单个或多个
03H	读保持寄存器	40001-49999	0000H-FFFFH	字操作	单个或多个
04H	读输入寄存器	30001-39999	0000H-FFFFH	字操作	单个或多个
05H	写单个线圈寄存器	00001-09999	0000H-FFFFH	位操作	单个
06H	写单个保持寄存器	40001-49999	0000H-FFFFH	字操作	单个
0FH	写多个线圈寄存器	00001-09999	0000H-FFFFH	位操作	多个
10H	写多个保持寄存器	40001-49999	0000H-FFFFH	字操作	多个

6.3 读线圈寄存器——01H

Modbus 功能码 01H 读取 Modbus 从机中线圈寄存器的状态,可以是单个寄存器,或者多个连续的寄存器。

6.3.1 发送

假设从机地址为 01H, 读取的线圈寄存器的起始地址为 0017H, 读取 38 个寄存器, 读线圈寄存器指令如表 6.3.1 所示:

从机 地址	功能码	起始地址 高位	起始地址 低位	寄存器数量 高位	寄存器数量 低位	CRC 高位	CRC 低位
01	01	00	17	00	26	0D	D4

6.3.2 响应

各线圈的状态与数据内容的每个 bit 对应, 1 代表 0N, 0 代表 0FF。如果查询的线圈数量不是 8 的倍数,则在最后一个字节的高位补 0,读线圈状态的返回结果如表 6.3.2.1 所示:

从机 地址	功能码	返回 字节数	数据1	数据 2	数据 3	数据 4	数据 5	CRC 高位	CRC 低位
01	01	05	CD	6B	В2	0E	1B	44	EA

其中,第一个字节 CDH 对应线圈 0017H 到 001E 的状态,转为二进制是 11001101,其中 bit0 对应 0017H, bit7 对应 001E,线圈 0017H 到 001EH 的状态如表 6.3.2.2 所示:

001EH	001DH	001CH	001BH	001AH	0019H	0018H	0017H
1	1	0	0	1	1	0	1
ON	ON	OFF	OFF	ON	ON	OFF	ON

最后一个字节为 1BH,对应线圈 0037H 到 003CH 的状态,转为二进制是 00011011,其中 bit0 对应 0037H, bit5 对应 003CH,其余两位用 0 填充,线圈 0037H 到 003CH 的状态如表 6.3.2.3 所示:

ĺ	003CH	003BH	003AH	0039H	0038H	0037H	0036H	0035H	
	0	0	0	1	1	0	1	1	
	填充	填充	OFF	ON	ON	OFF	ON	ON	

6.4 读离散输入寄存器——02H

功能码 02H 读取 Modbus 从机中离散输入寄存器的状态,可以是单个寄存器,或者多个连续的寄存器。

6.4.1 发送

假设从机地址为 01H, 读取的离散输入寄存器的起始地址为 00C4H, 读取 22 个寄存器, 读离散输入寄存器指令如表 6.4.1 所示:

从机 地址	功能码	起始地址 高位	起始地址 低位	寄存器数量 高位	寄存器数量 低位	CRC 高位	CRC 低位
01	02	00	C4	00	16	B8	39

6.4.2 响应

各个离散输入寄存器的状态与数据内容的每个 bit 对应, 1 代表 ON, 0 代表 OFF。如果查询的 线圈数量不是 8 的倍数,则在最后一个字节的高位补 0。读离散输入寄存器的返回结果,如表 6. 4. 2. 1 所示:

· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·			
从机地址 功能码	返回字节数	数据1	数据 2	数据 3	CRC 高位	CRC 低位

,				·		·····	,
Λ1	00	0.2	A.C.	DD	25	22	00
1 01	1 02	1 03	i AC	: DB	33	22	88

其中,第一个字节 ACH 对应 00C4H 到 00CBH 寄存器的状态,转为二进制是 10101100,其中 bit0 对应 00C4H, bit7 对应 00CB, 寄存器 00C4H 到 00CBH 的状态,如表 6. 4. 2. 2 所示:

00CBH	00CAH	00C9H	00C8H	00C7H	00C6H	00C5H	00C4H
1	0	1	0	1	1	0	0
ON	OFF	ON	OFF	ON	ON	OFF	OFF

最后一个字节为 35H, 对应寄存器 00D4H 到 00D9H 的状态, 转为二进制是 00110101, 其中 bit0 对应 00D4H, bit5 对应 00D9H, 其余两位用 0 填充, 寄存器 00D4H 到 00D9H 的状态, 如表 6.4.2.3 所示:

00DBH	00DAH	00D9H	00D8H	00D7H	00D6H	00D5H	00D4H
0	0	1	1	0	1	0	1
填充	填充	ON	ON	OFF	ON	OFF	ON

6.5 读保持寄存器——03H

功能码 03H 读取 Modbus 从机中保持寄存器的数据,可以是单个寄存器,或者多个连续的寄存器。

6.5.1 发送

假设从机地址为 01H, 读取的保持寄存器的起始地址为 006BH, 读取 3 个寄存器, 读保持寄存器指令如表 6.5.1 所示:

从机 地址	功能码	起始地址 高位	起始地址 低位	寄存器数量 高位	寄存器数量 低位	CRC 高位	CRC 低位
01	03	00	6B	00	03	74	17

6.5.2 响应

每个保持寄存器的长度为 2 个字节。保持寄存器之间,低地址寄存器先传输,高地址寄存器后传输。单个保持寄存器,高字节数据先传输,低字节数据后传输。读保持寄存器的返回结果,如表 6.5.2.1 所示:

从机	功能	字节	006BH	006BH	006CH	006CH	006DH 高	006DH	CRC	CRC
地址	码	数	高字节	低字节	高字节	低字节	字节	低字节	高位	低位
01	03	06	00	6B	00	13	00	00	F5	79

6.6 读输入寄存器——04H

功能码 04H 读取 Modbus 从机中输入寄存器的数据,可以是单个寄存器,或者多个连续的寄存器。

6.6.1 发送

假设从机地址为 01H, 读取的保持寄存器的起始地址为 0008H, 读取 2 个寄存器, 读输入寄存器指令如表 6.6.1 所示:

从机 地址	功能码	起始地址 高位	起始地址 低位	寄存器数量 高位	寄存器数量 低位	CRC 高位	CRC 低位
01	04	00	6B	00	02	00	17

6.6.2 响应

每个输入寄存器的长度为 2 个字节。输入寄存器之间,低地址寄存器先传输,高地址寄存器后传输。单个输入寄存器,高字节数据先传输,低字节数据后传输。读输入寄存器的返回结果,如表 6.6.2.1 所示:

从机 地址	功能码	字节数	0008H 高字节	0008H 低字节	0009H 高字节	0009H 低字节	CRC 高位	CRC 低位
01	04	04	00	0A	00	0B	9A	41

6.7 写单个线圈寄存器——05H

功能码 05H 写单个线圈寄存器, FF00H 请求线圈处于 ON 状态, 0000H 请求线圈处于 OFF 状态。

6.7.1 发送

假设从机地址为 01H,线圈寄存器的地址为 00ACH,使其处于 ON 状态的写单个线圈指令如表 6.7.1 所示:

 从机地址	功能码	起始地址 高位	起始地址 低位	数据高位	数据低位	CRC 高位	CRC 低位
01	05	00	AC	FF	00	4C	1B

6.7.2 响应

如果写入成功,返回发送的指令,即 010500ACFF004C1B。

6.8 写单个保持寄存器——06H

功能码 06H 写单个保持寄存器。

6.8.1 发送

假设从机地址为 01H,保持寄存器的地址为 0001H,数据位 0003H,写单个保持寄存器指令如表 6.8.1 所示:

从机地址	功能码	寄存器地址 高位	寄存器地址 低位	数据高位	数据低位	CRC 高位	CRC 低位
01	06	00	01	00	03	98	0B

6.8.2 响应

如果写入成功,返回发送的指令,即 010600010003980B。

6.9 写多个线圈寄存器——0FH

功能码 0FH 写多个线圈寄存器。如果对应的数据位为 1,表示线圈状态为 ON;如果对应的数据位为 0,表示线圈状态为 OFF。线圈寄存器之间,低地址寄存器先传输,高地址寄存器后传输。单个线圈寄存器,高字节数据先传输,低字节数据后传输。如果写入的线圈寄存器的个数不是 8 的倍数,则在最后一个字节的高位补 0。

6.9.1 发送

假设从机地址为01H,线圈寄存器的起始地址为0013H,写入10个寄存器,写入多个线圈寄存器指令如表6.9.1.1 所示:

从机	工力 台片石口	起始地址	起始地址	数量	数量	字节	粉捉 1	数据 2	CRC	CRC
地址	切配码	高位	低位	高位	低位	数	刻加 I	刻加 4	高位	低位
01	0F	00	13	00	0A	02	CD	01	72	СВ

其中,CDH 对应线圈 0013H 到 001AH 的内容,01H 对应线圈 001B 到 001CH 的内容,未使用位用 0 填充。此时,线圈寄存器的内容,线圈寄存器 0013H 到 001CH 的内容如表 6.9.1.2 所示:

	001AH	0019H	0018H	0017H	0016H	0015H	0014H	0013H
ĺ.	1	1	0	0	1	1	0	1

					•		
0022H	0021H	0020H	001FH	001FH	001DH	001CH	001RH
002211	002111	002011	001111	OUILII	OOIDII	001011	OOLDII

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·····		·	·	
0	0	0	0	0	0	0	1
	Ü	Ü	Ü	Ü		0	

6.9.2 响应

如果写入成功,返回写入的寄存器数量,写多个线圈寄存器的返回结果,如表 6.9.2 所示:

从机地址	功能码	起始地 址高位	起始地 址低位	数量高位	数量低位	CRC 高位	CRC 低位
01	0F	00	13	00	0A	24	09

6.10 写多个保持寄存器——10H

功能码 10H 写多个保持寄存器,其中每个保持寄存器的长度为两个字节。

6.10.1 发送

假设从机地址为 01H, 保持寄存器的起始地址为 0001H, 写入 2 个寄存器, 写入多个保持寄存器指令如表 6.10.1 所示:

从机	功能	起始地	起始地	数量	数量	字节	0001H	0001H	0002H	0002H	CRC	CRC
地址	码	址高位	址低位	高位	低位	数	高位	低位	高位	低位	高位	低位
01	10	00	01	00	02	04	00	0A	01	02	92	30

6.10.2 响应

如果写入成功,返回写入的寄存器数量,写多个保持寄存器的返回结果,如表 6.10.2 所示:

从机地址	功能码	起始地 址高位	起始地 址低位	数量高位	数量低位	CRC 高位	CRC 低位
01	10	00	01	00	02	10	08

第7章 装箱清单

序号	名称	数量	单位	备注
1	主设备 LW IGW7404M	1	台	
2	产品简易说明书	1	张	
3	合格证	1	张	